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Superconducting nanowire single-

photon detector (SNSPD) arrays for 

deep space optical communication 

Low-power consumption quantum 

cascade (QC) lasers for in situ gas 

absorption spectroscopy 
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Molecular absorption in the mid-infrared regime
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Laser wavelength modulation spectroscopy
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By sweeping current sourced to a single-mode laser, 
relative absorption is measured over a known pathlength

With additional small-amplitude 
modulation of the current, the 
demodulated spectral response can 
be measured with reduced noise

Laser light-current-voltage characteristics Current tuning of laser emission wavelength



Jet Propulsion Laboratory

California Institute of Technology

Tunable Laser Spectrometer (TLS) on the Mars Curiosity rover
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Webster, et al., Science 341, 260 (2013) 

Webster, et al., Science 347, 415 (2015) 

TLS instrument layout for CH4 and CO2/H2O detection Target absorption lines



Jet Propulsion Laboratory

California Institute of Technology

Tunable Laser Spectrometer (TLS) on the Mars Curiosity rover
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Webster, et al., Science 341, 260 (2013) 

Webster, et al., Science 347, 415 (2015) 

C, O, and H isotope ratios in Martian atmosphere Methane abundance on Mars
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Future planetary science instruments: Venus In Situ Explorer
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Target molecules: OCS and SO2

NASA

Venus In Situ Explorer 

atmospheric probe concept

C. Webster, JPL
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Future planetary science instruments: Venus In Situ Explorer
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Farquhar, et al., Science 289, 756 (2000)

Geological sulfur isotope record on Earth

S isotope measurements are a primary 

objective for proposed missions to Venus

Isotope ratios are key to understanding 

climate cycles on Venus and can verify 

theories of the evolution of Earth’s 

atmosphere
D. Grinspoon and C. Emmart, NASA

Photolysis and the sulfur cycle on Venus



Jet Propulsion Laboratory

California Institute of Technology

Semiconductor laser technologies for TLS instruments
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Future laser spectrometers will target longer-wavelength lines, which will require QC lasers

Power consumption is a limiting factor in component selection 
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Buried-heterostructure DFB QC lasers
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Evans, et al., Appl. Phys. Lett. 91, 071101 (2007)

Zhang, et al., Appl. Phys. Lett. 100, 112105 (2012)

Provides low optical loss, excellent heat dissipation, and 

reliability, but requires two epitaxial regrowth processes

Mid-infrared emission with sub-watt power consumption 

recently demonstrated by ETH Zürich and Alpes Lasers

Hinkov, et al., Electron. Lett. 646, 071101 (2012)

Bismuto, et al., Opt. Express 23, 5477 (2015)
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Regrowth-free DFB QC laser design
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Calculated grating coupling coefficient: 

4.8 µm wavelength, 775 nm pitch

Sidewall gratings with low-index dielectric 

cladding provide high optical confinement

Narrow, vertically etched ridges enable 

low-current operation
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Fabrication of DFB QC lasers
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Two-phonon-resonance design used <5 µm, 

non-resonant extraction designs employed >5 µm

MBE-grown QC active region on InP 

Transmission electron microscopy by M. Sullivan (Caltech)

Processed DFB QC lasers
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DFB QC laser performance: 4.8 µm wavelength for OCS detection
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Stable, single-mode emission with 750 mW 

CW threshold power consumption at 20 °C

Mode-hop-free tuning across target 

wavelength above room temperature

Devices have been run for as long at 2000 

hours without degradation

CW performance: 1 mm cavity, HR-coated back facet

Briggs, et al., Appl. Phys. Lett. 105, 141117 (2014)
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DFB QC laser performance: 7.4 µm wavelength for SO2 detection
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1 mm cavity, uncoated facets

CW operation

Briggs, et al., Opt. Express 24, 14589 (2016)
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QC laser packaging
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Low dissipation and high operating temperatures 

enable use of small form factor packages

Demonstrated modules with power consumption 

<1 W at threshold and <2 W at maximum output

Packaged 4.8 µm QC laser CW power consumption
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Symmetric QC laser far-field profile
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Low-index lateral cladding compensates for 

the asymmetric active region, resulting in a 

radially symmetric far-field profile

Enables efficient coupling to external optics

Measured far-field profile at 4.8 µm

Briggs, et al., Appl. Phys. Lett. 105, 141117 (2014)
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Beam profiles for 7.4 µm QC laser: Single aspheric collimating lens
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Infrared camera images at varying distance, z, from the lens

Horizontal and vertical beam profiles at z = 40 cm
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Collimation using flat metasurface lenses
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Achieved collimation with M2 = 1.02Flat lenses designed for 4.8 µm QC laser collimation 

Arabi, et al., Opt. Express 23, 33310 (2015)
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Deep space optical communication with SNSPD ground receivers
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Ground receiver requires an efficient, photon-counting detector at 1550 nm
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SNSPD principle of operation
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15 μm

WSi-based single-nanowire detector

OUTSNSPD

Readout concept

SNSPD detection process
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High-efficiency single-pixel SNSPDs
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WSi-based single-pixel, fiber-coupled detectors 

(in collaboration with S.W. Nam, et al., NIST)

Marsili, et al., Nature Photon. 7, 210 (2013)

Miller, et al., Opt. Express 19, 9102 (2011)
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Deep Space Optical Communication (DSOC) project
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Kicking off now as a NASA Technology Demonstration Mission 

Planned to launch with Discovery spacecraft in 2021

Goal is to transmit 264 Mbps from 0.16 AU, 45 kbps from 2.6 AU

Ground terminal at the 5 m Palomar Hale telescope to use a 64-pixel WSi SNSPD array
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High-count-rate SNSPD arrays
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64-pixel SNSPD array with buried reflector and topside coating optimized for 1550 nm

320-µm diameter free-space coupled active area, 4 quadrants, 16 wires per quadrant

10% nanowire fill factor: 4.5 x 160 nm wires on a 1.6 µm pitch
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64-pixel SNSPD array performance
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Measured 55% efficiency for 31 of 32 wires

1.3 Gcps (assuming 60 active pixels)

<7 kcps dark count rate per pixel at 

maximum detection efficiency
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64-pixel SNSPD array performance
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Measured timing jitter of <170 ps FWHM across detector bias plateau

Bias scaling suggests that readout noise is the dominant jitter mechanism
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Waveguide-integrated SNSPDs
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Single 5-nm-thick WSi hairpin patterned on top 

of a single-mode low-stress SiNx waveguide

FDTD simulations indicate an expected absorption 

length of <10 µm for the fundamental TE mode
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Cryo-compatible suspended inverse-taper fiber couplers
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Suspended low-stress SiNx undercut by wet 

chemical etching

Mode-matching to standard fiber indicates 

calculated 86% coupling efficiency

Additional scattering from tether and substrate 

interface reduces calculated efficiency to 42%
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Complete WG-SNSPD photonic chip
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Three nominally identical fiber ports per SNSPD and 

eight SNSPDs per chip

Enables independent characterization of waveguide 

loss and detector performance
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Count rate vs. wavelength
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Detector measurements show spectral filtering using a SNSPD coupled to a ring-resonator 

drop-port

FSR equivalent to conventional detector measurements, confirming TE mode operation

Weaker (more dispersive) resonances likely related to TM mode
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Waveguide-integrated SNSPD performance
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Detector pulses show recovery time of ~10 ns

Saturation of counts with bias current indicates high internal efficiency

System detection efficiency limited by couplers and waveguide propagation loss

l = 1615.5 nm

T = 0.5 K
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Waveguide-integrated SNSPD dark counts
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Low measured dark counts with and without fiber feed-through connected

blanked

coupled
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